Module panama.metrics.py_metrics
Functions
def nmae(y_true: numpy.ndarray | pandas.core.series.Series,
y_pred: numpy.ndarray | pandas.core.series.Series,
y_true_norm: numpy.ndarray | pandas.core.series.Series,
y_pred_norm: numpy.ndarray | pandas.core.series.Series,
normalization_mode: str) ‑> float-
Expand source code
def nmae( y_true: Union[np.ndarray, pd.Series], y_pred: Union[np.ndarray, pd.Series], y_true_norm: Union[np.ndarray, pd.Series], y_pred_norm: Union[np.ndarray, pd.Series], normalization_mode: str, ) -> float: """ Compute the normalized Mean Absolute Error (nMAE) between two arrays. Parameters: y_true (np.array, pd.Series): Array of true values. y_pred (np.array, pd.Series): Array of predicted values. y_true_norm (np.array, pd.Series): Array of normalization factors for y_true. y_pred_norm (np.array, pd.Series): Array of normalization factors for y_pred. normalization_mode (str): The normalization mode to use. 'additive': Subtract the normalization factor from y_true. 'multiplicative': Divide y_true by the normalization factor. Returns: float: normalized MAE value. """ if normalization_mode.lower() == "additive": y_true = y_true - y_true_norm y_pred = y_pred - y_pred_norm elif normalization_mode.lower() == "multiplicative": y_true = y_true / y_true_norm y_pred = y_pred / y_pred_norm else: raise ValueError("normalization_mode must be 'additive' or 'multiplicative'") return mean_absolute_error(y_true, y_pred) # type: ignore
Compute the normalized Mean Absolute Error (nMAE) between two arrays.
Parameters
y_true (np.array, pd.Series): Array of true values. y_pred (np.array, pd.Series): Array of predicted values. y_true_norm (np.array, pd.Series): Array of normalization factors for y_true. y_pred_norm (np.array, pd.Series): Array of normalization factors for y_pred. normalization_mode (str): The normalization mode to use. 'additive': Subtract the normalization factor from y_true. 'multiplicative': Divide y_true by the normalization factor.
Returns
float
- normalized MAE value.
def nmape(y_true: numpy.ndarray | pandas.core.series.Series,
y_pred: numpy.ndarray | pandas.core.series.Series,
y_true_norm: numpy.ndarray | pandas.core.series.Series,
y_pred_norm: numpy.ndarray | pandas.core.series.Series,
normalization_mode: str) ‑> float-
Expand source code
def nmape( y_true: Union[np.ndarray, pd.Series], y_pred: Union[np.ndarray, pd.Series], y_true_norm: Union[np.ndarray, pd.Series], y_pred_norm: Union[np.ndarray, pd.Series], normalization_mode: str, ) -> float: """ Compute the normalized Mean Absolute Percentage Error (nMAPE) between two arrays. Parameters: y_true (np.array, pd.Series): Array of true values. y_pred (np.array, pd.Series): Array of predicted values. y_true_norm (np.array, pd.Series): Array of normalization factors for y_true. y_pred_norm (np.array, pd.Series): Array of normalization factors for y_pred. normalization_mode (str): The normalization mode to use. 'additive': Subtract the normalization factor from y_true. 'multiplicative': Divide y_true by the normalization factor. Returns: float: normalized MAPE value. """ if normalization_mode.lower() == "additive": y_true = y_true - y_true_norm y_pred = y_pred - y_pred_norm elif normalization_mode.lower() == "multiplicative": y_true = y_true / y_true_norm y_pred = y_pred / y_pred_norm else: raise ValueError("normalization_mode must be 'additive' or 'multiplicative'") return mean_absolute_percentage_error(y_true, y_pred) # type: ignore
Compute the normalized Mean Absolute Percentage Error (nMAPE) between two arrays.
Parameters
y_true (np.array, pd.Series): Array of true values. y_pred (np.array, pd.Series): Array of predicted values. y_true_norm (np.array, pd.Series): Array of normalization factors for y_true. y_pred_norm (np.array, pd.Series): Array of normalization factors for y_pred. normalization_mode (str): The normalization mode to use. 'additive': Subtract the normalization factor from y_true. 'multiplicative': Divide y_true by the normalization factor.
Returns
float
- normalized MAPE value.
def rtae(y_true: numpy.ndarray, y_pred: numpy.ndarray) ‑> float
-
Expand source code
def rtae(y_true: np.ndarray, y_pred: np.ndarray) -> float: """ Compute the Relative Total Absolte Error between two arrays. Parameters: y_true (np.array, pd.Series): Array of true values. y_pred (np.array, pd.Series): Array of predicted values. Returns: float: RTAE value. """ return abs(y_true - y_pred).mean() / abs(y_true).mean()
Compute the Relative Total Absolte Error between two arrays.
Parameters
y_true (np.array, pd.Series): Array of true values. y_pred (np.array, pd.Series): Array of predicted values.
Returns
float
- RTAE value.
def smape(y_true: numpy.ndarray | pandas.core.series.Series,
y_pred: numpy.ndarray | pandas.core.series.Series) ‑> numpy.float64-
Expand source code
def smape(y_true: Union[np.ndarray, pd.Series], y_pred: Union[np.ndarray, pd.Series]) -> np.float64: """ Computes the Symmetric Mean Absolute Percentage Error (SMAPE) between two arrays. Parameters: y_true (np.array, pd.Series): Array of true values. y_pred (np.array, pd.Series): Array of predicted values. Returns: float: Symmetric MAPE value. """ return 1 / len(y_true) * np.sum(2 * np.abs(y_pred - y_true) / (np.abs(y_true) + np.abs(y_pred)))
Computes the Symmetric Mean Absolute Percentage Error (SMAPE) between two arrays.
Parameters
y_true (np.array, pd.Series): Array of true values. y_pred (np.array, pd.Series): Array of predicted values.
Returns
float
- Symmetric MAPE value.