Module panama.ml.benchmark.regression
Classes
class BenchmarkMeanRegressor
-
A benchmark regressor that predicts the mean of the training targets
Initializes the regressor with the mean strategy
Expand source code
class BenchmarkMeanRegressor(DummyRegressor): """A benchmark regressor that predicts the mean of the training targets""" def __init__(self): """Initializes the regressor with the mean strategy""" super().__init__(strategy="mean")
Ancestors
- sklearn.dummy.DummyRegressor
- sklearn.base.MultiOutputMixin
- sklearn.base.RegressorMixin
- sklearn.base.BaseEstimator
- sklearn.utils._metadata_requests._MetadataRequester
Methods
def set_fit_request(self: BenchmarkMeanRegressor, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$')
-
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it tofit
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
pipeline.Pipeline
. Otherwise it has no effect.Parameters
sample_weight
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
sample_weight
parameter infit
.
Returns
self
:object
- The updated object.
-
def set_predict_request(self: BenchmarkMeanRegressor, *, return_std: Union[bool, ForwardRef(None), str] = '$UNCHANGED$')
-
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it topredict
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
pipeline.Pipeline
. Otherwise it has no effect.Parameters
return_std
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
return_std
parameter inpredict
.
Returns
self
:object
- The updated object.
-
def set_score_request(self: BenchmarkMeanRegressor, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$')
-
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it toscore
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
pipeline.Pipeline
. Otherwise it has no effect.Parameters
sample_weight
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
sample_weight
parameter inscore
.
Returns
self
:object
- The updated object.
-
class BenchmarkMedianRegressor
-
A benchmark regressor that predicts the median of the training targets
Initializes the regressor with the median strategy
Expand source code
class BenchmarkMedianRegressor(DummyRegressor): """A benchmark regressor that predicts the median of the training targets""" def __init__(self): """Initializes the regressor with the median strategy""" super().__init__(strategy="median")
Ancestors
- sklearn.dummy.DummyRegressor
- sklearn.base.MultiOutputMixin
- sklearn.base.RegressorMixin
- sklearn.base.BaseEstimator
- sklearn.utils._metadata_requests._MetadataRequester
Methods
def set_fit_request(self: BenchmarkMedianRegressor, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$')
-
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it tofit
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
pipeline.Pipeline
. Otherwise it has no effect.Parameters
sample_weight
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
sample_weight
parameter infit
.
Returns
self
:object
- The updated object.
-
def set_predict_request(self: BenchmarkMedianRegressor, *, return_std: Union[bool, ForwardRef(None), str] = '$UNCHANGED$')
-
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it topredict
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
pipeline.Pipeline
. Otherwise it has no effect.Parameters
return_std
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
return_std
parameter inpredict
.
Returns
self
:object
- The updated object.
-
def set_score_request(self: BenchmarkMedianRegressor, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$')
-
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it toscore
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
pipeline.Pipeline
. Otherwise it has no effect.Parameters
sample_weight
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
sample_weight
parameter inscore
.
Returns
self
:object
- The updated object.
-
class BenchmarkQuantileRegressor (q: float = 0.5)
-
A benchmark regressor that predicts a quantile of the training targets
Initializes the regressor with the
quantile
strategy and the specified quantile.Args
q
- The quantile to predict. Defaults to 0.5 (median).
Expand source code
class BenchmarkQuantileRegressor(DummyRegressor): """A benchmark regressor that predicts a quantile of the training targets""" def __init__(self, q: float = 0.5): """Initializes the regressor with the `quantile` strategy and the specified quantile. Args: q: The quantile to predict. Defaults to 0.5 (median). """ super().__init__(strategy="quantile", quantile=q)
Ancestors
- sklearn.dummy.DummyRegressor
- sklearn.base.MultiOutputMixin
- sklearn.base.RegressorMixin
- sklearn.base.BaseEstimator
- sklearn.utils._metadata_requests._MetadataRequester
Methods
def set_fit_request(self: BenchmarkQuantileRegressor, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$')
-
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it tofit
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
pipeline.Pipeline
. Otherwise it has no effect.Parameters
sample_weight
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
sample_weight
parameter infit
.
Returns
self
:object
- The updated object.
-
def set_predict_request(self: BenchmarkQuantileRegressor, *, return_std: Union[bool, ForwardRef(None), str] = '$UNCHANGED$')
-
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it topredict
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
pipeline.Pipeline
. Otherwise it has no effect.Parameters
return_std
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
return_std
parameter inpredict
.
Returns
self
:object
- The updated object.
-
def set_score_request(self: BenchmarkQuantileRegressor, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$')
-
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(see :func:sklearn.set_config
). Please see :ref:User Guide <metadata_routing>
on how the routing mechanism works.The options for each parameter are:
-
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided. -
False
: metadata is not requested and the meta-estimator will not pass it toscore
. -
None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it. -
str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version: 1.3
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:
pipeline.Pipeline
. Otherwise it has no effect.Parameters
sample_weight
:str, True, False,
orNone
, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for
sample_weight
parameter inscore
.
Returns
self
:object
- The updated object.
-